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Abstract

Suppose a measure p dominates a measure n in the ordering induced

by the excessive functions of a transient Markov process. Rost shows

than n can be represented as the distribution of the process stopped

at a randomized optional time and started with initial distribution

1.. In this paper we introduce the shift operator to the class of

randomized optional times, inducing the class of randomized quasi-

terminal times and that of randomized terminal times. We analyze the

algebraic properties of these classes and obtain some compactness

results for the class of randomized quasi-terminal times. Some appli-

cations, including remplissage by hitting times, are presented.
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1. Introduction. Suppose we have a Markov process X on a suitable

state space S with Borel a - algebra S. If A is a measurable subset

of S and p an initial distribution for the process, then the Ii - hitting

distribution of A is defined by starting the process with distribution

p and running it until it hits A for the first time. This probabilistic

construct has close links with the balayage of measures, a potential -

theoretic construct, and plays a central role in probabilistic potential

theory. (The geometric meaning of these concepts becomes clearer when

A is the boundary of an open connected set G and p is required to have

support in G.)

In earlier work ([7], [8], [9]) the authors investigated the

reverse of this construction, the so-called inverse balayage problem.

One is given a distribution n on A and tries to characterize the family

of measures whose balayage onto A is n. For finite state Markov chains

rather straightforward techniques yield a complete description of the

convex set of measures which balayage onto the given T). The same kind

of analysis works for a diffusion on an interval, but more sophisticated

techniques are required for general state spaces.

The questions arising in the inverse balayage problem are closely

connected with Skorokhod's problem and work of Rost. Rost [12] shows

that if p dominates n in a partial ordering defined by the excessive

functions for X, then n can be realized as the distribution of the

process started with initial distribution p and stopped using a random-

ized optional time {T :0 < u <i:

(1.i) T(dx) f P" (X (Tu) E dx) du.
0

2
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One interpretation of (1.1) is that n is represented as a sort of

convex combination of optional times, and this motivates the definition

of a convexity structu e on the space of randomized optional times.

The inverse balayage problem can be viewed as a search for measures

P which satisfy (1.1) with T = TA for all 0 < u <1.UA

Another related result is that of Heath [6]. Drawing heavily on

potential-theoretic work of Mokobodski and Watanabe [16], Heath shows

that for discrete-time processes the randomized times in (1.1) can

be chosen to be "nested" terminal times: for each u, T is a terminal
U

time and u < v implies T < T a.s. If one specializes to finite

state Markov chains, it is easy to obtain that result using a less

sophisticated approach - we call it remplissage via hitting times and

present details in Section 5 as an example of the construction of a

randomized terminal time.

In [1] Baxter and Chacon studied compactness properties of

randomized times in a suitable topology, and Falkner [3] remarked on

the use of this compactness to obtain (1.1). (Several of Falkner's

related papers are listed in the references.)

Motivated by all of these ideas and results, we examine here

structural properties of randomized times in the presence of the shift

operator. Of special interest is the class of randomized quasi-terminal

times, which lies between randomized optional times and randomized

terminal times. This class is motivated by the interaction between

the shift operator and basic algebraic operations, and the requisite

definitions are given in Section 2.

3
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In Section 3 we discuss algebraic consequences of the definitions,

while Section 4 is devoted to sequential compactness of quasi-terminal

times. Technical questions of null sets arise and a complete generali-

zation of Baxter and Chacon's results to quasi-terminal times does not

seem possible without additional hypotheses. In Section 5 .e illustrate

some of these ideas, including applications of sequential compactness results

to Markov chains and to Rost's original proof of (1.1) for Markov processes.

2. Randomized times and random measures. The motivation for this

work comes from Markov processes, and we record some of the basic

definitions. Let S denote the Borel a - algebra on a state space

S assumed to be Lusin - that is, S is homeomorphic to a Borel subset

of a compact topological space. Let X F F, F , X, t, P X) be a

Markov process on S. We assume that the associated semigroup P tf(x) =

P x[f(Xt)] maps Borel functions into Borel functions and that the

process is right-continuous. (We follow the convention of using pX

to denote both a probability and an expectation.)

Our immediate concern is less the Markov process itself than the

filtration (Ft : t > 0), which we assume to be right-continuous and the

usual completion of the separable C - algebra

(2.1) F0 = C{X : s < t).
t s -

One way of introducing the randomization is via the product space

(2.2) x [0, -] , Ft = F x B,

where B denotes the Borel sets on [0, 0]. The first class of randomized

times with which we are concerned is given, for example, in Baxter

and Chacon [1]; we use a slight variation of their definition.

4



(2.3) Definition. T is the set of mappings T -- [0, 001 with the
0

properties

(a) T(., u) is optional for each u - that is,

{Jw: T(w,u) < t} E Ft for each t > 0.

(b) T(W,.) is nondecreasing and left-continuous for each w.

(We define T(3, 0) = T(W, 0+)o)

(c) u T(W) z inf {u : T(W, u) '4 < .

The set of random measures corresponding to T coincides with the

following class.

(2.4) Definition. A0 is the set of random measures A on [0, -1 with

the properties

(a) A', s) E F, alls E (0, o], where A(0A, s) = A(W, [0, s]).

(b) A(w, s) is right-continuous in s.

~(c) A(W, [0, -)) <

The relationship between T and A0 is defined in the usual manner:

given T in T define AT by

(2.5) A (W, s) = sup{u : T(, u) < sI.
T

Then AT is nondecreasing, and it is easy to check that

(2.6) {W : A (w, s) >u = {w : T(w, u) < sI.
T u

Routine computations show that AT E A 0 . In fact, the mapping M1  T 0

A defined by
0

(2.?) M (T) AT

has the following properties.

,. .. ,.-. .. *. . . . . . . . . . . . . ...-..... -.



(2.8) Lemma. The mapping M1 is one-to-one and onto, and its inverse

map M2 : A0 - 0 is given by M2 (A) = TA , where

(2.9) TA (w, u) = inf{s A(W, s) > u).

We now bring in shift operators using the "big shift". For T E T0

and s > 0 define

(2 .10a) 0 T(W, u) = s + T(O sW, u);

(2.10b) 0 A(W, t) = A(O sW, t-s)l(s < t < ).

The definition of 0 on random measures seems to have been introduced bys

Sharpe (see [2] for example), and 0 T appears in one guise or anothers

throughout the literature, usually in the simpler form of T (Note that
S

we should really define two shifts, since one applies to random times

and the other to random measures.)

Next we define subclasses of A and T suggested by the shift operator
0 0

and the applications mentioned in the introduction.

(2.11) Definition. Let

T1 = {T E TO: for all 0 < s < 0 T E T and
10- s 0

for all 0 < r < s and 0 < u, 0 T(w, u) < G T(w, u)
- - - r -u s

A1 = {A EA 0  for all 0< s < 0 A E A0  and for

all 0 < r < s, 0 < t, 0 A(w, t) > 0 A(w, t)};
- - - r - s

T2  {T E T 1 for all 0 < s < c, s < T(w, u)

implies 0 T(w, u) = T(w, u)};
s

A 2 = {A E A A(w, s) < A(w, t) implies 0 A(w, t) A(w, t)1.
2 s

-- -



These definitions can be weakened by allowing inequalities to fail

on null sets depending on the time parameters. Thus A 1denotes the set

of A E A such that E)A E A for all s >0 and such that for 0 < r < s
0 S 0-- -

there is a null set depending on r and s off which 0) A(W, t) > 0A(W, t)
r -s

for all t. Similarly, T 1shall denote the analogous class of randomized

times. The need for these classes arises in Section 5, where we apply

our results to the representation theorem of Rost [12], and only the sets

A Iand 11are available.

A random time in T 2has the property that T(-, u) is a terminal time

for all u. one can construct such a time by defining T(-, u) as the hitting

time of aBorel set B Iwhere0 < u<v < 1implies B :B . (An example

of how such times arise in practice appears in Section 5.) Times in'T 2

shall be referred to as randomized terminal times, while those in the

intermediate class T 1are called randomized quasi-terminal times, since

the defining property comprises part of the definition of a terminal time.

We single out those times in T . which correspond to ordinary random

times.

(2.12) Definition. A time T in T 0is called natural if T(b3, u) = T(W)

for all u < u T' Correspondingly, we call a natural T a quasi-terminal

time or a terminal time if it is also in T or T repcily
1 2'repciey

We conclude these definitions by showing T.i and A.i are related in

the same way that T 0and A 0are related and also that the shift operaters

commute with M and M We leave it to the reader to check that the same
1 2*

results apply to T Iand A1

(2.13) Proposition. For i = 1, 2, MIand M2restricted to T. and A.

respectively are inverses. Furthermore, for all s > 0

7



(2.14) 0M = M , sM1 = M0.s

Proof: Suppose T M2 (A) with A in A . Then with u > 0 and r < s

(2.15) 0 T(W, u) s + T(OSsW, U)

= s + inf{t : A(6 W, t) > ulis
= S + inftt : A(W', s+t) > u)

- s + inf{t : A(W, s+t) > ul
r

= r + inf{t > s-r : A(Orw, t) > U)

> 0 T(w, u).
- r

Line three above translates to 0) M (A) = M (0 A), and the entire sequence gives
s2 2s

T in T Now set r=C. If to = T(w, u) > s, then for s+t < t < s+t2, we have
1' 0 . 0- 2

A(W, s+t ) < u < A(W, s+t 2 ).

Hence, if A E A2 , A(, s+t 2 ) = A(w, s+t 2 ) and there is equality in line

four of (2.15). Further, the infimum implicit in the last line is over

t > s, so that T must be in T2t2

For the other direction we have an analogous argument. Suppose r <s <t

and T E T. Then with A M (T),
1' 1

(D a(w, t) = A(OW , t-s)

= sup{u : T(0OW, u) < t-s}

sup{u 0 T(W, u) < t}
s

< sup{u T(w, u) < t1

sup{u T(O w, u) < t-r} 0 A(w, t),
r - r

confirming sM I(T) =MI(0sT) and A in A . If in addition T E T2 and3..2

AO., s) < u1 = A(u, t), then T(w, u) > s for u > u0 , which gives

0 
0

I
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o) T(W, u) equal to T(w, u). If r is set equal to zero it follows that the
s

suprema above can be restricted to u > u0 and that we have equality in the

fourth line, completing the proof.

3. Algebraic structure on A. and T.. Suppose X is two-dimensional Brownian

motion absorbed at the circle of radius two. If p denotes the point mass

at the origin and fl a probability measure with half of its mass at the

origin and half uniformly distributed on the unit circle, then p dominates

n in the ordering induced by the excessive functions. Furthermore, YJ can

be realized as the process with initial distribution p stopped "half the

time" at zero and otherwise at the unit circle. If D is the hitting time

of (0, 0) and D1 is the hitting time of the unit circle, then one could

think of fl as the process with initial distribution V stopped at " - D +
20

2

make this approach rigorous by defining an appropriate algebraic
structure on T0 using A0 and the mapping M2 . Before proceeding let us note

that the intuition behind these ideas is not new; Meyer, for example, alludes to

order and convexity properties in his discussion [111 of Baxter and Chacon's work.

Addition and positive scalar multiplication on A are defined in terms
0

of the distribution functions.

(3.1) Definition. For A1 , A2 E A0  and c > 0 let

(A + A 2 ) (w, t) = A (w, t) + A (w, t);
1 2 12

(cA )(w, t) = c A (w, t).

Since the properties characterizing A are satisfied for both A + A and
0 3. 2

cA1 , A is closed under these operations. It is easy to check that A11 0

is also closed under both operations and that A is closed under scalar
2

multiplication. (The latter as;sertion follows from the use of c 0 A =

0 (cA).)
s
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However, A need not be closed under addition. For example if
2

A. (W, t) = l(Ti (W) < t < ) i = 1,2,b 1 1 - -

where the T. are finite terminal times, then the inequality A (w, S) <
1 1

A. (w, t) obviously implies equality of 0 A. (w, t) and A. (w, t). However,
1 si I

if

T (w) < s < T2 (W) < t < 0s T (W),

then (A + A) ()w, s) < (A1 + A) ()w, t), but

0 (A + A2)(w, t) = 1 < 2 = (A + A2 )(W, t).

sl1 2 i 2

The following result summarizes these observations.

(3.2) Lemma. The sets A and A are positive cones under addition and

positive scalar multiplication, while A2 is closed under positive scalar

multiplication. Furthermore, if algebraic operations on T. are defined by1

T + T = M (A + A

1 2 21 2

and
c- T1 = M 2 (c A

then T and T1 are positive cones, and T2 is closed under scalar multiplication.

Proof. The definitions of multiplication and addition on A show these
0

operations satisfy the required algebraic properties. Moreover, these

properties are preserved under the bijection M , so that T is a positive
2 0

cone; for example,

(a T) + (a -T) =M (aA + aA) =a -(T + T
0 1 2 0 1 0 T1)

Since M2 maps A1 onto T, we easily deduce that T is a positive

cone. Note that part of the verification uses commutativity of scalar

multiplication with the big shift:

I

-i 10

S S... " ' . ... . .. " S . . .*
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O (CT) = 0 s (M2 (cA)) M2 ( (CA))

= M 2 (cO A) CM 2 (E) A) = c 0 A.

2 s s

We omit the remaining details. j

The effect on T of scalar multiplication is to rescale the randomizing

parameter:

cT(w, u) =infft :cA(i, t) > ul

= inf{t : A(, t) > u/c} = T(W, u/c).

Addition has the effect of mixing up the values assumed by the constituent

times, an effect noted by Meyer [10]. Thus, for the example preceding

(3.2)

(T + T (cw, u) = inf{r : AI (w, r) + A2 (w, r) > ul
1 212

Tl ( w0 ) , 0 < u < 1

TI (W), + T2 (w), l < u < 2

2 < u.

Order and convexity structures are defined in the obvious way.

(3.3) Definition. A < A iff AI ( -, t) < A2(w, t) for all
I1- 2 A1(wt A(~)fr

t > 0 ; T < T iff T (w, u) < T (w, u) for all u > 0.

I 1- 2 1 -2

To ease the exposition we assume we are working on a fixed 9 with the

inequalities holding for all W. However, the presentation can be easily

modified so that the inequalities are valid except on a null set.

(3.4) Definition. For A1 , A2 in A0 , let
r0

(AIV A (w, t) -A (w, t) V A (w, t);
1 2 1 2

(A A A (Hw, t) -A (wo, t)A A (wo, t).
1 2 1 2

Simildrly, given T1 , T2  in T0  let

" T T 2 ) N, u) (TI(w, u) A (T 2 (t ' u).

k"1

1- ii2V
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The sets A. and T. have a variety of lattice properties, but we will

content ourselves with stating only a few explicitly.

(3.5) Lemma. The sets A. and T. , i = 1 and 2, are closed under"21 1

A and V. In addition scalar multiplication and the shift operators

commute with A and V, while

(3.6) CAI + A2  (A1 V A2 + (A1 A A2)
T + T2 (T A T) + T 1 V T2

11 T2 = 1 2 + T 2

Finally,

(3.7) M2(A VA) = M (A) M (A
2 1 A 2  2 1 V 2 2Vl AMI(T = M (TI) AM (T2)"
1 A11 V 12

Proof. It is easy to check that A is closed under V and A and that
0

the first part of (3.6) holds. Moreover, since s commutes with both
S

A and V, the same assertions hold for A1.

Nowif T=M(A V A) then
2 1 2

T(w, u) = inf t AI(W, t) V A2 (w, t) > ul
1 2~

" inf{t AI(W, t) > ul A inf{t 2 (w, t) > u}

T1 (w, u) A T2 (w, u).

Similarly M 2 (A1 A A 2  =M 2 (AI ) V M 2 (A). This shows T and T1 are

closed under A and V and also that the equations in (3.7) hold.

Finally, the second part of (3.6) follows from (3.7) and the first part

of (3.6).

The example preceding (3.2) shows that T need not be cloqed under2

V. However we do have a partial result.

9, 12
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(3.8) Lemma. A and T are closed under V and A respectively.
2 2

Proof. Let A1 and A2 be in A2 . Suppose s < t and

(3.9) (A1 V A2 ) (W, t) > (A)1 V A2 ) (W, s).

If A. (w, t) > A (, s) for i = 1, 2, then

(3.10) s (A1 V A2 ) (W, t) = (EsA V 0sA2)(WI, t)
s 1 s2

)= SA I(w, t) V sA 2(w, t) = (A, V A2 ) (w, t).

If A2(A(, s) = A2 (w, t) , necessarily A1 (W, t) > A2 (w, t) and

A (W, t) > AI(w, s) for (3.9) to hold. This suffices for (3.10)
I

as well, and the assertion for A2 follows. The assertion for T2 then

follows using the usual mapping. f

It is natural to ask about convexity properties, which requires

that we use bases of the positive cones described above. In doing this

we impose a condition for all W - or again for a full set if we use

the weaker definitions mentioned above.

(3.11) Definition. For i = 0, 1, 2 , let

T.(i) = T [T : UT( () < 11;

Ai(1) = A. n {A : A(W, [0, 0)) < 11.1 1

Further, we require natural times in this context to have u T(() = 1.

It is easy to check that M and M2 , restricted to T1 (1) and A i(1) ,

remain inverses of one another. The sets defined in (3.11) are those

used by Baxter and Chacon. (1].

The next result identifies extreme points.

(3.12) Theorem. Fori =0 and i = 1 Ai(1) and T. (1) are convex sets.1 1

The extreme points of TO(1) correspond to natural times, while those of

T (1) are quasi-terminal times.

113I.
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Proof. The first assertion is immediate from the definitions. For the

second, given a E (0, 1) and A E A. (), define A, = a (a A A ) and

A max(O, (1 - a)-l(A -a)). It is easy to check that A and A are
2 2

also in A. (1) and that A = aA1 + (1 - a)A2 . If A is an extreme point,

A = A. = A2  Thus if A(W, t) < a, A2 (w, t) 0 = A(w, t). If A(, t) > a,

A (W, t) = 1 = A(W, t). Hence for each W there is a T (M) such that
1 0

A(w, t) = l(T (W) < t < ). (Note that To = 0  is a possibility and also
.0

that we could have done the foregoing analysis on a set of probability

one.) It is easy to check that if

T 0 < u <
TO  u >T~,u) f 0 w u>1

then T is a natural time if A E A (1) and is a quasi-terminal time if
0

A E A. (1). The proof that natural and natural quasi-terminal times are
1

extreme points is trivial, and details are omitted. 0

Having characterized extreme points we proceed one step further and

characterize edges, i.e., faces of dimension one.

(3.13) Proposition. Let T1 and T2 be extreme points of T (1). Then
0

T and T define on edge iff one of the times is smaller than the other,
1 2

say T < T2, and F(TI) is trivial.

Remark. If we are working with respect to a fixed measure P , then the

null sets should be interpreted with respect to that measure. Indeed, the

proposition implies that edges will exist only for initial measures whose

support is at one point.

Proof. Suppose T and T are natural, T < T and F(T1 ) is trivial.1 2 1-2 1

Suppose there exist random measures Bi in A 0(1) and a,bE (0,I), such that

bB (w, t) + (1- b)B 2 (w, t) aA (Nd, t) + (1- a)A 2 (w, t).

14
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Since B. can have a jump only where A or A has a jump, it follows that
11 2

for some random variable C. , we have B CiA + (1 - C ) A T however

it is straightforward to show that C. must be F = F - measurable,
1T AT T1 2 1

and hence constant a.s. Consequently T1 and T2 define an edge.

Conversely, suppose T and T2 define an edge. Then going to the

random measures we have

2 (A + A2 ) [A1 V 2 + A A 2 ].

By hypothesis there then exists a constant c so that

WI t) V A2(W, t) = CAl(W, t) + (I - c)A2,t)

If there is a set with positive measure such that T1 < t < T2  then

1 V A (W, t) = 1 = c + (I - c)A (W, t)
2 2

which implies the constant c equals one. If T2 < T is also possible on

a set with positive measure, we obtain c equals zero. Both cases can't

occur, and we assume T < T
1 - 2

Now suppose F(TI ) is not trivial. Then there exists a nonconstant

F(T1 )-measurable random variable C(w) with 0 < C(W) < 1. If we define

B 1I(W, t) = ( - c(w ) l W, t) + C(C)A 2 (W, t)

and
B2(W, t) = C(W)A1 (W, t) + (1 - C(j))A 2 (W, t)

then B1 and B2 are both in A 0(1) and2 0

( 1 + B2) =(A 1 + A2).

However, B1 and B2 cannot be represented as a convex combination of A and

A2 over the nonnegative reals, and that contradiction completes the proof.

F-.
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4. Compactness of M(1). In this section we deal with problems qualitatively

different from the algebraic topics of Sections 2 and 3. In particular, the

role of a fixed initial distribution P means we shall be dealing with one family

of probability measures on (, F)

(4.1) Pf(A) f(dx)P'(A) fp(dx)P X(e0 A).

We hereafter write P for Po'.
0

Let " denote the Borel sets on [0, -] and let C denote the set of bounded

F0 B 5 - measurable functions that are continuous in t. We recall that F0

* is separable, so that C is generated by a countable family of functions of the

form Y(M) f(t), where f is continuous. In fact we can and frequently will

assume that f is chosen from the countable family D = {exp(-rt) r E Q), where

Q denotes the set of nonnegative rationals.

In [1; Baxter and Chacon use C to define a topology on A 0(1) and prove

sequential compactness of A 0(1) relative to it. This requires the following

kind of convergence.

(4.2) Definition. A sequence (A n) in A 0(1) converges (BC) to A A (1) if

for all Z in C

P[I Z(W, t)A (w, dt)] - P(f Z(w, t)A(w, t)].
0 n 0

Our goal is to prove the analogous result for A (1), but that does not

seem possible without restrictions on the underlying process. Our approach is

to push as far as possible without additional assumptions and then to illustrate

hypotheses that allow stronger conclusions. Here is the general result.

(4.3) Theorem. Assume X is a Markov process satisfying the hypotheses of

Section 2 and let (A ) be a sequence in A (1). Then there exist a countable
n 1

set H , possibly empty, a subsequence (A -) and A E A (1) such that
n

16



(4.4) bAn- n 0bA (BC)

for all b, except possibly for b in the set H. Moreover, A is defined using

A E A 0(1) having the properties: r A E A 0(1) for r in Q' H U Q 0 r0 A
0. r 0r n

* converges (BC) to 0 rA for r E Q' and if r and s are in Q with r < b < s,

then for all t > 0

r A(w' t) > bA(0w, t) > 0sA(W, t).

(We subsequently abbreviate this as rA > 0bA > 0sA .)

It is tempting to try to combine A and A into one random measure in Al(1)

satisfying (4.4) for all b. Unfortunately this does not seem possible without

*restrictions on the process. Before going into that point further we shall

prove Theorem (4.3). In doing so we will obtain the following corollary, which

illuminates the role of the set H.

(4.5) Corollary. Suppose A has the property that for all nonincreasing f,

P[f f(t + r)A(0 r, dt)] is continuous in r. Then H = 0 ,and (4.4) holds for all
0

.!b > 0 0

The proof of (4.3) relies heavily on certain results from Baxter and Chacon

[1], which we record here. Baxter and Chacon define a functional at for Y E L (P) and

f E C[0, -] by

(4.6) a(Y, f) = P[Y(w) . f(t)A(&, dt)]

*and establish that functionals of the form (4.6) are characterized by the following

properties

(4.7a) a is bilinear and positive 0 < Y and 0 < f imply 0 < a(Y,f);

17



(4.7b) C(1, 1) 1 I (Y, f I < I1Y II Iif I

(4.7c) for all b, supp (f) support (f)C [0, b] implies a(Y, f)

a(P(YjFb)' f).

(We note that to fulfill the first condition in (4.7b) we need to define

A(w, {-}) as 1 - A(w, 0).)

We need tqo additional conditions. Let r > 0 be fixed.

(4.7d) supp(f) C [0,r] implies a(Y, f) 0

(4.7e) a(Y, f) = a(P(YIG)) where G o- (F)
r

(4.8) Lemma. A functional a has the representation (4.6) with A = 0 B
r

if and only if (4.7a-e) hold; B is unique up to P a.s. equivalence.

Proof. If A = 0 B , it is easy to check that the conditions in (4.7) hold.
r

Conversely, as in [1], (4.7a-c) produce A, and one need only verify it is

of the asserted form. Fixing f and defining Y as ffA(w, dt), we can use

(4.7e) to prove

P(Y- P(YIGr))2  = 0

i.e., Y is G -measurable. Repeating this for a countable determining classr

in CIO, -] gives existence of a random measure B such that A(U), dt) =

B(r w, dt) almost surely. Moreover, (4.7d) shows that support of both
r

measures is [r, -] a.s. Redefining B, we have A = B B. The verification that
r

B is unique up to a.s. equivalence is then immediate. (Actually, we have

uniqueness with respect to the measure P on (Q, F).) [I
r

Another result from (1] that we shall find useful is:

(4.9). Let S and T be in T (1) , with A and B their corresponding measures.
.4. 0

Then the following are equivalent:

(i) S(w, *) < T(w, -) a.s.

pI



*(ii) A(W, t) > B (, t) a.s. ;

(iii) If f is nonincreasing on [0, -1 then

? ff(t)A(w, dt) > if(t) B(w, dt) a.s.

Here is the first step in proving (4.3).

(4.10) Proposition. Given a sequence (A ) in A (1) , there exist a subse-n 1

quence (An ) and random measures {Bb : b > 0} such that:

(i) for each b, Ob nA 0 b Bb (BC);

(ii) there exists a set Q0 of full measure such that

" if 0 < b < c , then OBb > cBc on Q0

(iii) except possibly for B in a countable set H

lir P[Y - ft + c)B (e w, dt)] = P[Y * If(t + b)Bb(bw, dt)J
cCb c

for f a continuous nonincreasirng function and Y > 0

Proof. Let Q denote the rationals as before and select a subsequene An

such that for each rational r , r A n converges (BC) to a limit randomr n

measure A in A (1). Since (4.7 d, e) hold for 0 A n , they hold for Ar 0 r n r

and hence A is of the form 0 B . Thus
r r r

f f(t)A (w, dt) = . f(t + r)B (6 W, dt).

0 r 0r r

Since An E A (1) , it follows that for Y > 0nP

P[Y f f(t + r)A (0 w, dt)] > P[Y - f(t + s)A (0 W, dt)],
0 n r- 0 n r

provided f is nonincreasinq and r < s. For r and s in Q , this inequality

persists in the limit, and we can define a set Q of full P-measure such
0

that (ii)holds for all b and c in 9 Moreover, since q(r) = g(r, Y, f)
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P[Y f f(t + r)B ( w, dt)] is monotone on Q, we can define a countable
Sr r

set H such that for b not in H , g is continuous across b for all Y and

f in the family D of functions f(t) = exp( - rt) , r E Q

We now extract a further subsequence so that 0 A n converges to

O B for r E Q = H U Q . Since Q' is also countable, the precedingr r

analysis applies to the new measures, and we use the same letters.

On 0 we define Bb for all b by

f f(t + b)Bb (60 W, dt) = sup f f(t + s)B (8, dt).
0 0

s E Q'
s >b

Note that the family {0bB b > 0} extends the family with b restricted
b b -

to Q' and that conditions (ii) and (iii) have been established.

For condition (i) we observe that (BC) convergence is valid by

definition for b in Q' . For b not in Q' we have

00
PLY f f(t + s)B (0 W, dt)I

o

< lim PLY - f(t + b)A n(6 w, dt)]

0 n b< lim P[Y 0o f(t + b)A n(0 b w, dt)]

< P[Y f fCt + r)B (0 W, dt)]
- 0 r r

provided r < b " s , r and s are in Q', 0< Y , and f nonincreasing.

Since b is not in Q' , we have continuity across b for a generating class

of C. Therefore the limit exists and can be represented using 0bBb

This completes the proof of (4.10).
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We are now able to prove Theorem (4.3).

Proof of Theorem (4.3): It would be pleasant if we could simply drop the

b as a subscript of B and aver that we had obtained the limit random measure.

Unfortunately, that seems to be the most difficult step. Our approach is

to define a new initial measure p and a limit distribution relative to

PP The properties of p will enable us to define A.

Let {gs : s E QI denote a countable family of nonnegative, bounded

continuous functions that generates B ; then with a(s) and b(r) denoting

positive normalizing constants, we define

' -bp.i
p(dx) = a(s) gs(b)e P (X E dx)db

+ Z b(r)P (Xr E dx).

rE Q'

Next apply Baxter and Chacon's result to (A n ) relative to the measure
n

PP on (0, F) and extract yet another subsequence converging (BC) to a random

measure A E A (1). We then use standard techniques to obtain an F 0-measurable
0

random measure P P-equivalent to A and denoted by the same letter.

Now it is clear that on path space PP is absolutely continuous with
r

prespect to P for r E Q'. Hence there exists a Radon-Nikodym derivative

W such that
r

PP[y 0 er  f f(t + r)An' (0rw, dt)]

= PP [Y f(t + r)A (0, at)]
r n

= p [Y W f f(t + r)A .(, dt)]

r n

P [Y* W f f(t +- r) A (w, dt)]

P[Y • W (Y f(t + r)A(, dt)]
r

= *( f f(t + r)A(a , dt)J.
r

21



It follows that on a set of full P-measure we have 0 B 0 A for allr r r

r in Q'. In effect we can eliminate the subscript from B for all r E Q'.r

Moreover, we can retain the inequalities 0 A > 0 A , r < s E Q' , on thisr - s

set of full measure.

A repetition of the argument using absolute continuity confirms that

for each s

f gs(b)e-Pb[Y f f f(t + b)A (w, dt)jdb

converges to the same expression with A replacing A - . Indeed with our
n

usual Y > 0 and f E D, we can get an upper bound for the expression above,

to wit

b k+1 -b p O

.f gs (b)e P [Y - f f(t + bk)An'(w, dt)]db
k b sbk 0

and a lower bound of the same form but using bk_ in place of b inside the integral
kk

If the bk are restricted to Q', we can pass to tne limit and express the upper and

lower bounds using Bbk and Bbk+l as the random measures. Finally, assume

the mesh size of the partition is taken smaller and use countability of

the set of discontinuity points to obtain

(4.11) f g (b)e-bP [Y - f f(t + b)B (w, dt)ldb
0 0 b

-0 b 00
= f g (be P [Y f f(t + b)A(W, dt)ldb.

0 0Since A was chosen F -measurable, it follows that for Y F -measurable

000
the function G(W, b) defined as Y(w) f f(t + b)A(w, dt) if FO x B-measurable.

0
xpX (b ,w )

By assumptions on the (P X), that means P [G(j', b)] is F 0 -measurable
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and Fubini's theorem than gives the B-measurability of P JpX(b'w)[G(W',b)]j.

We can argue that the corresponding expression with Bb in place of

A is also B-measurable, since it is the limit of B-measurable functions.

It then follows that (4.11) holds for all Borel measurable g, as well as

the gs F from which we can conclude that for all b except those in a real

null set,

P[Y - f f(t + b)B (w, dt)] = P[Y f f(t + b)A(w, dt)].
b 0 b b 0

Hence, except for b in a null set

0bB = 0bA , a.s. P)1 .
b b b

Again by Fubini's theorem, on a set of full P -measure 0 bBb E bA , except

for a real null set depending on W. But this means that if we use the

concept of essential limits - that is, with respect to a topology on [0, ]

in which open sets are Borel open sets minus a set of Lebesgue measure

zero - we can define a random measure A by

(4.12) f f(t)A(w, dt) ess lim f f(t + b)A(O b, dt),
0 b+0 0

for f nonnegative, nonincreasing and continuous. Note that the monotonicity

property of 0 bBb and its a.s. equivalence to 0 bA also give

bb 0

f f(t)A(w, dt) = lim f f(t + b)B (N w, dt).
0 b+I' 0bb

The key feature of (4.12) is that we obtain the same random measure

Sw', dt) for all w' of the form w' = 0 = 0 W , where W and 2
b 1 b 22 1 2

lie in the set of full measure defined in the preceding paragraph. This

is because we can use A(0b W', .) = Ob+b, ) A(O b+b, -) in
b b~ 1  b~ 2

23
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the limit and need not worry about accumulation of null sets that would

result were we to try to use Bb directly in (4.12).

Those unfamiliar with the concepts used in (4.12) can refer to Walsh [15],

in which these topics are described and from which the F-measurability

of A follows. Since 0 B = 0 A on a set of full measure, the inequalitiesrr r

asserted in (4.3) have been established, and at times b not in H the conver-

gence of 0b A n to 0 bA is immediate. We have thus devised a way to "drop

the subscripts from B b" - at least to the point of reducing the statement

to two limit measures A and A. That is enough for (4.3) and completes the

proof of the theorem.

Without additional restrictions on the process we cannot eliminate

the need for two random measures in the statement of (4.3). In view of

the generality in which the theorem is formulated, that is not entirely

unexpected, but neither is it entirely satisfactory. The difficulty is

that in regularizing A to get A E A (1), we imposed a type of right-continuity

not required for A (1). The effect is that we cannot assert that (An-)
1 n'

converges to k even though we do know (A n) converges to A.n

As an example, let X be uniform motion to the right on the line and

let A correspond to the first hit of {l/n} U [1, -). Then A evidently
n

corresponds to the first hit of {O} U [1, -); in particular if X ()

0, A(w, -) puts all its weight at {0}. However, for that same W, A(w, -)

corresponds to the first hit of (1, -) and thus is not the limit of the

A
n

There are a variety of assumptions restricting either the process

X or the sequence (A ) that enable us to make sharper assertions. Then

first is motivated by the counterexample above.

2
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(i) Uniformity of convergence of right-continuous A . Without lossn

of generality, replace the subsequence (A n.) by the original sequence.

* Let Z stand for Y(M) f(t + r) for our usual Y and f and use (Z r  ) A)r r r

to denote

0

P f Z (w, t)A(OrW, dt)].0r

We make two assumptions:

(4.13a) for all sufficiently large n, lim (Z , 0rAn ) = (Z A ).

r r rn n

(4.13b) for each such Z there is a 6 > 0 such that

rli sup (Z rA) - (Zr , 0rA)J = 0.

n-* rEQr<6 r

It follows from (4.13) that (A ) converges to A. To see this fix
n

Z and the 6 guaranteed by (4.13b). Then

I(Z, A) - (Z, A) I < (Z, A) - (Zr , A)j

+ i(z 0 rA) - (Zr , ErAn)I + (Zr rAn) - (Z An) I

+ l(Z A) - (Z A)I .

The fourth term on the right can be made small for large n, as can the

second term uniformly in r < 6 , by virtue of (4.13b). Fixing such an n,

we can then make the first and third terms small by choosing small r.

Hence (Z , A) = (Z , A) for a generating class of Z, which verifies the

assertion.

(ii) Markov chains with countable, stable states. The conditions

in (4.13) hold in this case, so that A (1) is sequentially compact.

(iii) Discrete time Markov processes. In this case there is no difficulty

with null sets accumulating, and the Baxter-Chacon argument easily gives

sequential compactness of A (1).
I1
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(iv) Domination of the transition probabilities. (We are indebted

*to J. Glover for suggesting this condition.)

(4.14) Proposition. Suppose n is a measure an S such that

P (X b E ") <<,r(-)

for all b > 0. Then A (1) is sequentially compact.

Proof. It is easy to use an absolute continuity argument to show that

* for all b E Q' , K = 0bA almost surely. Hence bA works as the limit

measure for all b and the almost sure inequalities defining l(1) follow

immediately. 0

5. Applications. As noted in the introduction, motivation for studying

structural properties of randomized times arose from problems concerning

transient Markov processes. In this section we consider three applications

of the material from the preceding sections. In the first we use a modi-

fication of the remplissage (filling) scheme to give an explicit construction

of a randomized terminal time that realizes (1.1), thereby solving in

T 2(1) Skorokhod's problem for finite state Markov chains. In the second

application we pursue an analogous example for a transient Markov chain

with countable state space and see how (4.13) can be applied. The third

application concerns Rost's original work [12] and illustrates how the

class of randomized times could be narrowed in his context.

We begin by assuming X is a Markov chain with a countable state space

S. Let A be a finite subset of S and V a fixed probability with support

in A. Define by M(P) the set of probabilities n with support in A and such

that

(5.1) ffdn <fdp
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for all f E E , the cone of bounded excessive functions. (The integral

in this context is just a finite sum, but in subsequent discussions we

shall interpret (5.1) as an integral over a more general space.)

We have the following result.

(5.2) Theorem. For each n in M(P) there exist an integer N < card (supp (n)),
N

a set of positive reals {s. 1 < i < N) with Z s. = I and a strictly

decreasing family {A. : 1 < i < NI of subsets of supp(n) such that:

(a) PI(D i < I) 1 , 1 < i < N , where D. = infin > 0: X E A.I '

and A, = supp (n);

(b) n(x) = f P (X(T = x)du,0

where T is the randomized terminal time

T(W, u) =D M), < u < u.
1 - -u 1

i
with u0  0 and u. s.

Proof. In the filling scheme cited above one fills in the measure 1 step

by step, with each step corresponding to one time unit. In our approach

each step corresponds to one hitting time. Specifically, let p0 = 1J
ni = f and A1 =supp (nI). Since the function f(x) = PX(D < 0) is excessive,

(5.1) gives

p0 (Dl < 0O) = ff dl0 > ff dni = pf(D < w) = 1
S10- 11 1

Thus the measure W(x) = P"0(X(D I) = x) is a probability with supp(P I) C

supp(r1l). If l = we are done. Otherwise define

t = max{t ti1 - >  }
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n h2  U t - 1)

and let A2 supp(n 2) A1 * To see that n 2 E M(j1l), suppose f E E and

define its r~duite

rif(x) = PX[f(XD)) D < -I.

The function r f is excessive, and r f < f with equality on A1  Hence

ffdn1  fr fdnr< frlfdp0 = ffd..,

It follows that

fd32 (1 t [f fdn 1 d 0  < ffd 1 < fdi,

2fr 1 (1 0- -t1fl 0] fdi

confirming nl2 E 01 Setting A2  supp(TI2), the function f(x) = PX[D < O]

is excessive, and

pV10(D < ) - p 1 (D < ) = ffdp 1 > ffdn 2  1

Proceeding recursively, define V2 (x) P"O(X(D) = x) if 112 =2

we have
T1 (x) =tP 0[X(D I ) = x] + (I - tl)PV0(X(D2 ) = x]

and need only set N = 2, s= t1 and s2 = 1 - tI to complete the proof.

Otherwise, we define

t 2 =max{t : 2 -t1 2 >0},

"3 =(l - t2(-ln - t2
3t 2) ~2 2

and set A = supp(n 2) C A2 . We then repeat the argument of the preceding

paragraph.

Since the sets A. are strictly decreasing this procedure ends after1

atmost card (supp(n)) steps, and the constants can be identified as sI = tI

i-i
and s, = Ti (l - tj))t i , 2 < i < N , where N is the number of steps. 0
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Rcmplissage with hitting times also applies in the finite state

case even when (5.1) fails. One proceeds in the same fashion, but since

D. = is possible, the p i may be sub-probability measures, the ni may
1 1 1

have mass greater than 1 and the t. must be constrained not to exceed

one - all of this in order to account for mass that "escapes."

(5.3) Theorem. Let p and T) be probability measures on the finite set

A and assume A is transient for the process. Then there exist an integer

N > 0 , strictly decreasing subsets {A. 1 < i < N+11 and positive constants

s. , 1 < i < N such that Es. = 1 and1 - - 1

N
T1 N W s.P [X(D i ) = xI + (n - %+1i (x)

x
where HN+ (x, y) P (X(DN+l) = y , N+ 1 <

Proof. One proceeds as in (5.2), stopping at stage N if either IN Ni

or t > 1 In the first case we have (5.2). In the second case, the
N-

s. are defined as before and1

N

i 

where
N-1 l = - tj))(nN - N

1

If A = supp(n - PN) , the proof will be completed by showing T.
N+l su N N

has the asserted form. For f E

N-1
ffdn. ffdn - ) siffdp. - sN ffd N .

N-1
By construction q E s i i  on A - AN
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N-I
ffd% f fd - E s. f fdi - ffd N +(I - Ns)ffd N'

A i=l AN
N N

Since f equals its reduite r Nf on A , we can replace f by r Nf above to

obtain

N-i
ffdn. r N fd(fl p ) s s. f rN fdlji + (1 - s )ffdp N

A i=l 'AN

N N(Recall that ffdp N  r rN fdp.) The integrals in the summation have the

form ffdN , yielding the last step:
N

ffdn frNfd(n - P) = ffd(nN - 1N).

It follows that n and T, - N have the same potential and are thus equal.C N "N

It is then easy to show that n P =  I - P where %+1 supp()

N N N+1 N+l hr up(i)

and this completes the proof. L
Note that the procedure always terminates in a finite number of steps.

This contrasts with the time-step method of remplissage, which may require

infinitely many steps. However, it is easy to construct examples which

show the approach used here is generally applicable only in the finite

state case. In fact these examples motivate Theorem (4.3), which would

allow us to use a limiting process to define an appropriate randomized

quasi-terminal time, at least in the Markov chain case.

Thus, for our second application we assume X is a transient Markov

chain on a countable state space, V and n are measures satisfying (5.1)

on this countable set, and we replace the assumptiun of finite support

for P and n by the assumption that supp(') is a transient set. Under

these hypotheses, (5.1) is equivalent to PG(x) > nG(x) for all x E S,

where G is the potential matrix.
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Define T(C) as inf{n > 1 : X E C} D(C) as inffn > 0 X E C1 *
n n

T r)= T~supp(n )) I and D i= D~supp(TI)J. Then B= fx :Px(T rl< M0) (

cannot be empty. In fact, since P [D < -= 1 by (5.1), we have a more

precise result.

(5.4) Lemma. If (5.1) holds, then P1 '(D(B%) < P") = Pr(D(B0 ) <

We then have the following.

(5.5) Theorem. Suppose p and n satisfy (5.1) and supp(n) is transient.

Then there exists a randomized quasi-terminal time T such that for all

x( s

T (x) f1 P(X(T) = x)du
0

Proof. Let C be a finite subset of supp(n) - B0 and let A C1 I B0

Using the reduite as before it is easy to show that 11 dominates f11 in

the potential ordering, where V1 and TI are the balayages of V and Tf onto

A1  By (5.4), D(AI ) < 0 a.s. P and P , so that 0 and nI are probabilities.

We will now show that the recursive procedure in Theorem (5.2) works

in this context as well. In fact, inspection of that procedure shows we

need only verify V (x) < nI (x) for all x E B0 - That being so, the set

B will be carried intact in the iteration, and the same proof applies.
K 0

Define, then,

G1  {x B0 , l (x) > nl (x)},

G2 = {x E B0 , F 1 (x) < T1 (x)I,

and
f(x) = PX(D(C I G2 ) <co).
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Then f is excessive, ffd 1 < ffd 1 , and from that we can obtain.1o-

f (1 - f)dp 1 < f (I - f)dn 1
G 1  G1

Since p 1 (x) > n 1 (x) on G1 , on G1 we have

f(x) = pX(T(C U G2) < 
c) < 1

But for all x E BO , P (Tn < -) < 1 by definition, which leads us to
on

conclude that G 1is empty, and 11(x) < n 1 (x) everywhere on B0

We now proceed as follows. Let (C : n > 1) be an increasing sequence
n

of sets converging to supp(n) - BO let Tn be the balayage of n onto

C U BO and let T be the randomized terminal times constructed in
n"0 n

Theorem (5.2):
1

(5.6) PT (x) f P PX(Tn(U) )  xjduT n 0n
n

f Pn[X(T n (u) x)ldu = 1n(x)
0

where pn is the balayage of P onto C , B . Condition (iii) at the end

nn 0

of Section 4 applies, so we can extract a subsequence converging (BC)

to a randomized quasi-terminal time T such that nG(x) > PUG(x) > nnG(x)

foi all n. S nce nn(y) > fl(y) on C U BO it follows that TG P 1.1G

and that forces n to equal P

We have_ relied upcn the assumption that time and state space are

countable, and it is reasonable to ask whether this assumption is indispensable.

In fact it is not, and we shall indicate how Rost's original proof remains
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valid with times restricted to T (1) , at least under the assumption of

|1

(4.14). The first thing to record is Meyer's observation that Baxter and

Chacon's work can be extended. For the details we refer the reader to

[11] and content ourselves here with stating the relevant result.

(5.7) Theorem. Suppose X is a standard, transient Markov process with

potential kernel G. Then if (A n ) converges (BC) to A, for any bounded

S-measurable function f

P1[f Gf(X )A (w, dt)] - PP f Gf(X )A(w, dt)]. 0
0 tn0 t

Now suppose X is a standard, transient Markov process on (S , S)

and that P and n satisfy (1.1) in that context. Rost (12] approaches

the problem of finding an S in T (1) such that r = PS by first obtaining
0

a "maximal" S such that P dominates n in the potential ordering. ThatS

argument can be carried over to Tl(1) by using sequential compactness,

at least in the context of Proposition (4.14). The next step is to use

the potentials P G and nG to construct a certain nonrandomized, terminal
S

time T that is conjoined with S to form S' = EsT . With the sort of algebraic

structure introduced in Section 3, Rost shows a convex combination of

S and S' also dominates n and thus by maximality PS[T = 0] = 1. The form

of T coupled with an extension of Hunt's domination principle forces

equality of P G and nG , completing the proof.

S

If one could show S' was also in Ti(1) , then the same arguments

Rost used would apply, and we could assert that there is an S in T (1)

such that i = ), at least in the context of (4.14). We conclude by
S

stating the missinq fact as a lemma, omitting the proof which is merely

a matter of tracing out the definition.

3
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5.8) Lemma. Suppose T E T (1) and S E T (1) .Then S' S + T 0 S is

in T (1)
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